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Mean Field Theory for Coulomb Systems'
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We study a classical charge symmetric system with an external charge
distribution ¢ in three dimensions in the limit that the plasma parameter
g—zero. We prove that if g is scaled appropriately then the correlation
functions converge pointwise to those of an ideal gas in the external mean field
¥Y(x) where ¥ is given by

—AY + 2z sinh(f¥) =¢q

This is the mean field equation of Debye and Hiickel. The proof uses the sine-
Gordon transformation, the Mayer expansion, and a correlation inequality.

KEY WORDS: Debye—Hiickel theory; Coulomb systems; mean field theory;
sine-Gordon transformation; Mayer expansion.

1. INTRODUCTION

As in [5] we study a classical charge symmetric Coulomb system in three
dimensions in the limit that £ tends to zero. ¢ is the plasma parameter

e =B/l (L1)
where £ is the inverse temperature, and /,, is the Debye length
Iy = (262) " (12)

z is the chemical activity. Unlike [5], we include an external charge
distribution g(x) in our system. Debye and Hiickel [3] used a mean field
approximation to study this limit. Our main theorem, Theorem 3.1, says that
if we scale the charge distribution g(x) appropriately then in the limit of ¢
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530 Kennedy

tending to zero the correlation functions of our system converge pointwise to
those of an ideal gas in an external mean field ¥(x). ¥ is given by

—AY + 2z sinh{f¥) =¢q (1.3)

The sine-Gordon transformation expresses the partition function as a
functional integral

z =jd,u exp 2zj dx :cos[\/B #(x)]: + iJ dx /B 8(x) q(x)
A

where du is a Gaussian measure whose covariance is essentially 1/]x — y|.
The integrand of this functional integral is the partition function of an ideal
gas in an imaginary external potential. Thus the sine-Gordon transformation
expresses our system as the average of an ideal gas over different imaginary
external potentials. After a scaling argument we will find that each term in
the exponential contains a factor of 1/e, as does the inverse of the covariance
of du. So we should look for stationary points of the functional integral.
There is one stationary point, and it is given by

49 —2z /B sin(\/f ¢) +1 VB g=0

Comparing this PDE and Eq. (1.3) we see that the dominant term in the
functional integral (1.4) is given by ¢ =i \/,E v,

In [5] we studied the same system without an external charge
distribution g. This paper should be regarded as complementary to [S] rather
than a continuation of [5]. The only parts of [5] that we will use explicitly
are the correlation inequalities of Section 5 of [5] and the discussion of the
Mayer expansion in Appendix A of [5].

To make the Coulomb system stable we must add a short-range
potential, e.g., hard cores, to the Coulomb potential. No such short-range
potential appears in the Debye—Hiickel theory, so we will let the short-range
potential tend to zero as ¢ tends to zero. We require the same hypotheses on
this short-range potential that we did in Section 6 of [5].

The sine-Gordon transformation introduces functional integrals that
must be controlled. We do this using a correlation inequality from [5]. This
inequality is an extension of an inequality of Frohlich and Park [4]. Another
approach to controlling the functional integrals is to use the cluster
expansion of Brydges and Federbush [1]. The main advantage of our
approach is its simplicity. Our approach allows several types of boundary
conditions while the cluster expansion has only been carried out for Dirichlet
boundary conditions. The main advantage of the cluster expansion is that it
can handle the non-charge-symmetric case while our approach cannot.
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We end our introduction with an outline of the paper. In Section 2 we
define the Coulomb system. In Section 3 we state our main theorem and
briefly study the PDE (1.3). In Section 4 we use the sine-Gordon transfor-
mation and the Mayer expansion to rewrite the partition function and the
correlation functions as functional integrals. We then use these results to give
a nonrigorous derivation of our main result. We prove our main result in
Section 5. The more technical parts of this proof are relegated to Appen-
dices A and B.

2. THE SYSTEM

Our system consists of two species of particles with equal chemical
activities z and charges +1. We include an external charge distribution in
our system. This charge distribution is specified by a real-valued function
g(x) on R*. We will assume g(x) is a C* function with compact support.

The particles interact with each other via the two-body potential

)

Vix,v; ¥, 0) -

+ V%, 75 v, 9) 2.1
where x, y € R® are the positions of the particles and y,0 € {—1, +1} are
their charges. ¥V, is a short-range potential which depends on ¢ and tends to
zero as ¢ tends to zero. For example, V', can be the hard-core potential

) _foo if |x—y|<2c¢l,
Vix vy 0)= 0 otherwise

(co is a constant.) The specific hypotheses that ¥, must satisfy for our
theorem are the same as those in [5]. (See the beginning of Section 6 of [5].)

The particles interact with the external charge distribution only through
the Coulomb potential 1/47 {x — y|. The potential 1/47n|x — y| is the kernel
of —1/4 where A has free boundary conditions. We use free boundary
conditions only for convenience. Our theorem is also true for Dirichlet and
periodic boundary conditions.

For a volume 4 < R? we denote the grand canonical partition function
by Z,(A). The correlation function for m particles at yl,..., Vm € R? with
charges 6,,...,6,, € {—1, +1} is denoted by p{") (¥ sy Y3 0y smees Opr) Zy(A)
and p('"’ are defined in the usual way using the potential energy

Un(xl seees Xy 3 V1seees yn) = Z V(xi’ Vis X yj)

ii<jgn

+ Z y,jdx qIwEe @)
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where
1

mq(ﬁ

1
0= dx[dya(x)
For example, see Egs. (2.4) and (2.6) of [5]. We assume A is large enough
that it contains the support of g.

We will denote the infinite volume limit of the correlation functions by
dropping the subscript A. With Dirichlet boundary conditions and a wide
class of short range interactions V,, these limits were shown to exist by
Brydges and Federbush [1]. For arbitrary boundary conditions but special
choices of V, the existence of these limits was proven by Frohlich and
Park [4]. We assume that some infinite volume limit of our correlation
functions exists. The only condition we need on how A4 — R? for our result is
that bounded sets are eventually contained in A.

3. STATEMENT OF RESULT

In the theory of Debye and Hiickel [6, pp. 239-242] the mean field
¥(x) is given by

—A¥(x) + 2z sinh[B¥(x)] = g(x) 3.H

If we work in units with /, =1, then f=¢ and z = (2¢)~". So in the limit
that ¢ - 0, ¥ will be given by the linear equation

(4 + ;)% =¢q

This linearized theory was studied in [5]. To see nonlinear effects we must
increase g as € - 0.

Without an external charge distribution the densities of the two species
of particles are asymptotic to z as € - 0 [Theorem 3.3 of 5]. So it is natural
to multiply g by z. For later convenience we will multiply ¢ by 2z. Then
(3.1) becomes

—AW¥(x) + 2z sinh[f¥(x)] = 2zg(x) (3.2)
Let
y(x) =B¥(xly)
- (3.3)
g4(x) = q(xIp)
Then (3.2) becomes
—Ady + sinhy =4 (3.4)

Our main resuit is the following theorem.
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Theorem 3.1. Let § be C* with compact support. Let v be given by
Eg. (3.4). Let

q(x) = q(x/1p) 3.5)

Let y,,..., ¥,, be distinct points in R* and 8, ,..., §,, € {—1, +1}. Then for any
choice of potentials ¥, satisfying hypotheses (H1) through (HS) of [5] (see
p. 279 of [5])

PIN Y ilp s Yiulp s Oy pens 8,) ~ 2" €XP [— 2 5j1//(yj)]

Jj=1

as ¢ — 0 in the sense that
lim 2="p§7(y1Ip ) = eXp [— > 5,-w(y,-)] (3.6)
£ =

We remind the reader that pi7) is the infinite volume limit of the

correlation function. So in our theorem the infinite volume limit is taken
before the € — 0 limit.

Theorem 3.1 assumes that the PDE (3.4) has a solution for § € C¢.
Standard techniques in the theory of PDEs can be used to prove the
following lemma.

Lemma 3.2. If §€ CP(R?), then Eq. (3.4) has a unique, bounded
C® solution y which is in all the Sobolev spaces, i.e.,

| &xy@)d+ )" pE) <o for m=0,1,2,. (3.7)
Moreover,
lw(x)|<(=4+1)7§|(x) forall x€R’ (3.8)

We sketch a few ideas that can be used to prove Lemma 3.2. Formally,
w should be the minimum of

1 ~
E®)=]_|56-49)+ coshs 167
R3
E(¢) is a convex, lower semicontinuous functional on

§¢€%I:J(cosh¢— 1)< o0
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#,, is the Sobolev space of L? functions whose distributional first
derivatives are L? functions. By a standard theorem [9] there is a unique y
which minimizes E(g).

We would like to use the usual bootstrap argument to show that since §
is in all the Sobolev spaces then so is y. The exponential growth of the sinh
function and its derivatives could cause problems in this argument. However,
by the maximum principle and the fact that sinh(x) —x > 0 for all x > 0, we
have the a priori bound

sup [y(x)] < sup |g(x)| (3.9)

So the exponential growth of sinh(x) is irrelevant.
One way to prove inequality (3.8) is as follows. Let

Vix) = sinh [y (x)]
w(x)
Then the PDE can be written
—dy +Vy=4g

Note that ¥(x) > 1 for all x. So the Feynman~Kac formula implies that the
kernel of (—4 + V)~ ! is pointwise bounded by the kernel of (—d4 + 1)~ '. The
bound (3.8) follows.

For later reference we summarize some consequences of Lemma 3.2. By
inequality (3.8), w(x) decays exponentially with the distance from x to the
support of §. Since w € L™ this implies w € L'. y being in L' M L™ implies

sinhy e L'NL® (3.10)
Using the PDE one computes
A4y = cosh y[sinh y — §] + sinh(y)(Vy) - (Vy) — 44
Lemma 3.2 and the above results show this is in L. So

Ady € L* (3.11)

4. THE SINE-GORDON TRANSFORMATION

As in [5] we follow Brydges and Federbush [1] and apply the sine-
Gordon transformation to the long-range part of the interaction and use a
Mayer expansion for the short-range part. We refer the reader to Appendix A
of |5] for the details of the Mayer series. That appendix uses Brydges and
Federbush’s development of the Mayer series [2].
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We take the short- and long-range parts of the Coulomb interaction to
be

1 — exp(—|x|/ulp)

7ulx) = 47 | x|

4.1
exp(—|x|/ulp)

75x) = 47| x|

Let

Vi(x, 75 3,0) =907 (x — )

(4.2)
Vy(x,7; 3,6) =70 7 (x —y)

So
V=V, +Vy+V,
We define the total short-range interaction to be
Vs=Vy+V, (4.3)

As a guide to our notation we offer the following. L, Y, and S stand for
long, Yukawa, and short, respectively. We have labeled the short-range part
of the Coulomb interaction as ¥V, rather than Vg since there is another short-
range potential, namely, V,. So V is used for the sum of these two short-
range potentials. We will use the subscripts L, Y, and § in this way with
other quantities.

In Section 2 we defined Z,(A) and p{"). Our theorem concerns p3")_,,
so in this section we will carry out the sine-Gordon transformation for
Z,.4(A) and p§7,.. 1t is convenient to work in units with [, = 1. (See p. 280
of [5] for the details of how this is done.) This amounts to setting [, = 1,
B=¢, 2z =¢"" and replacing g by §. We should also replace 4 by [, '4. To
avoid this factor of /' we will write down expressions for Z,, (I,4) and
pim 224~ We can do this since we take the infinite volume limit of p"} ,.,
before we let &€ - 0.

We split the field generated by g and the self-energy of ¢ into short- and
long-range parts:

Ay 7) =7 [ dy 73— ) ) @4)

Q=g [t [ 7ia-01a0) @)
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A;(x,y) and Q, are defined similarly. We will use i to stand for x;, ;. For
example, V, (i, j) is V. (x;, ¥;:5 %5, 7))
The function C(x, y) =7 {x —y) is the kernel of the positive operator

1 1

o . S—
A A+ (uly)?

Hence there exists a Gaussian process with covariance C(x, y), i.e., there
exists a probability measure du and a Gaussian random variable ¢(x) for
each x € R? such that [ du ¢(x) ¢(¥) = C(x, ). See pp. 16~17 of [7].

In integrations with respect to Lebesgue measure we will often suppress
the dx and the (x) in ¢(x). For example,

[ =1 dx (x) ()

We will follow the usual convention of using ¢ to denote a point in. the
measure space on which du is defined. So F(4) is a function on this measure
space, and sup, |F(¢)| is the sup of |F(¢)| over the measure space.

The sine-Gordon transformation says

ZouollyA) = [ du Z(9)

with ) o e
2@y =exp |0+ [ Vesi| S Z

n="0 n,

X exp (4.6)

i<j i

.. , [
—¢ [ > Vs, )+ 2 Ay0) — \7; Z Yi¢(xi)]
where 7=z exp(e/8nu), [, d"x=[,dx,--- [, dx, and each y, is summed

over +1. The expression beginning with > % is a partition function with a
convergent Mayer series. So

26)=exp | s, + [ Ve s+ 3 K,0)] @)

K, (¢) is given by Eq. (A.1) of |5} with the one-body interaction being

Vo) = Vi 7) = Ay(610 71) — —= 7:6(x) 8)

e

We will check the convergence of this Mayer series in Section 5.
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For the correlation functions we let

Q_s: Oy + Z Vs(yi95i;yj’5j)+ 2 Ay(ijéj) (4.9)
1<i<j<m =1
Asx ) =A%, 7)+ > Vslx, 7 ¥;,0) (4.10)
j=1

Q—L and A, are defined by the same equations with Vg replaced by V,, 4, by
A,,and Q, by Q,. We have

P?le,zzq(yl Ip s Yinlps 0150w Opy)

=2"Z,,,(Ip )" j du f[ expli/e 8,6(y)]: Z(9)  (4.11)

where Z(9) is given by the equation for Z(g), Eq. (4.6), with Q, replaced by
Qg and A, by A;. The : : denotes normal ordering. (See p. 275 of [5] or
pp. 9-11 of [8].) Note that

ziexpli /e 8,0(y;)]: = Zexpli /e 6;0(1,)]

Again, we have a convergent Mayer expansion:

Zo=ew |05+ L[ Vesit S R@| @)

n=1

K ,(9) is given by Eq. (A.1) of [5] with

V@)= Vl(xi9yi):/TS(xi’yi)_ (4.13)

i
—=7:0(x;)
Ve

We can use the results of the sine-Gordon transformation to give a
nonrigorous derivation of our main result. This derivation serves as an
introduction to the proof in the next section.

If we let 4 — 0 as € > 0, then Vy— 0. Setting ¥V =0,

K,@)=K,$)=0 for n>2
— 1 7 (4.14)
K@) =K,(9) =] dx:cos[v/&g(x)}:

[

The measure du is formally given by

dut6) = Tp exp | - 5[ dx 4490 |
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with

76=N" [] dp(x)

xeR3

where dg(x) is Lebesgue measure with respect to the variable ¢(x). So if we
ignore the normal ordering

Zusa=[ D000 |~ [ 6 + [ coste )+ L[ Ve o]
We change variables ¢ — ¢~ '/*¢. Then

1
Zu=[ D600 |+ 56)] @15)
with
1 s
S(¢)=—7j¢(—4)¢+jA cos ¢ +1] 99 (4.16)
As ¢~ 0 the dominant contribution to this integral should come from the
stationary point of S(¢). It is given by the equation

oS

5900

or
(49)(x) — sin[¢(x)] + ig(x) = 0 (4.17)
(for x € A). Letting ¢ = iy, the equation becomes
—Ay +sinhy =4

which is Eq. (3.4), the mean field equation of Debye and Hiickel.
The correlation functions are given by

P(z'f;(yl Ipsyes O o)

—=z (76 [TewlBs0)lon | —5@)|  @19)

The stationary point of this functional integral is the same as that of Z,_,.
Evaluating [ |; exp[id;#(y;)] at the stationary point ¢ = iy, we have our main
result

P (ilps) ~ 2" | | exp[—0,u())] (4.19)
J
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5. PROOF

This section is devoted to the proof of Theorem 3.1. We will make
frequent use of Section 5 and Appendix A of [5].

We will use the ¢Z and o notation in the following way. A quantity F is
@(e?) if |F| < ce” for some constant c. ¢ must be independent of 4. In fact, ¢
can only depend on the charge distribution ¢, the integer m (the theorem
concerns the mth correlation function p“), the points y,,... y,,, and the
constants ¢,, 6,, ¢,, 0,, B, ¢; in hypotheses (H1) through (HS) on V,. F is
o(e?) if ¢ can be replaced by f(e) where f is a positive function with
lim, o+ f(¢) = 0. f can only depend on the same quantities that ¢ can depend
on. As a special case of this notation, a quantity is ¢Z(1) if it is a bounded
function of everything except possibly §, 7, ¥, s Vs C1» O15 €35 05, B, and
¢,. If F=F(g) is a function on the probability space of our Gaussian
process, then F=(¢”) or o(e”) implies uniformity in ¢ as well. So
F(¢) = (e”) means sup, | F(9)| = Z(e?).

We will use o(4) to denote a quantity that -0 as 4 — R*. In general
this quantity will depend on & and need not —0 uniformly in & as 4 — R°.

Throughout the proof we will work with the finite volume correlation
function p§y. 1,A(V11p ). We will show

2 | (alpe) — oxp [— 5 ajwy,-)] — (1) + o)
i=1

Letting A — [R3, this proves the theorem.
Step 1 (Complex Translation). The translation ¢ — ¢ + ie ~ "y yields

Z.yllpA) = | du exp[S(9) + E] (5.1)
with
S@)=—-[VEsc Ty + J\/¢q+ Ko+ie )
=%fwc"‘w—8Qr%qu"
and

z- ﬂ‘z’ZZ palP1lps)

=Z,,,(IpA4) " exp [— Ji 5,-!//()0)]

X[ du [T expli VB 6,8(3)): x0[S6) + 56) + £+ '
=1 (5.2)
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with
S@=Y Ko+ic "y -KG+ia ] ()
E'=—¢Qg + 0y (5.4)
We split S(¢) up as
" S(¢) =R(9) + il(9) + W(p)
wit
R(g) = Z Re[K, (¢ + ie~"2y) — K;(9)]
— %JA :cos(\/¢ ¢):[cosh(y) — 1]
16)=——[Vagcy

s L[ Veea+ S ik, o+ ic~ )~ Kyp))

W@ = 3 K@)+ | cos(/z 9y leosh(y) — 1] (5.5)
K%(¢) is K ,(¢) with 7 set equal to zero. So the one-body potential in K(¢) is
Vi) = ﬁyﬂx) (56)

As we will see later, R + il is the part of S(¢) which is bounded as 4 - R?
and which -0 as ¢ —» 0. The charge symmetry of our system implies that
K%(9) is real, so R, I, and W are real.

For a function F(¢) on the measure space of du we let

{ du F(§) exp[ W(6)]
T du exp [ W(9)] .7)

(F(9)) =

Then

—m (m)

4 pZZq,lDA(yIZD"")
= exp [— > Sw(y)) +E']
=

o LI wexpli Ve 0,0(9)]: exp[R(§) + i) + S'(9)])
(exp[R(9) +iT(9)])
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So the proof is reduced to showing

E'=o(1) (5.8)
(expIR@) + )]) = 1+ 0(1) + o) (59
(1T expli V2 0,000 xolR®) +i16) + @)

=1+ 0(1)+ o(A) (5.10)

Step 2 (Preliminaries). We let
y=gl/2+e with 0<d<1/6 (5.11)

Then the various short-range forces all go to zero as & goes to zero. In
particular, from Eq. (4.4) and

[ de 730 =

we have
14y < o =7 141, (512)
and
14y, <42 11, = ¢ 1l (513)
Also,
1Vl =2 (5.14)

where || ||, for a two-body potential is defined by Eq. (6.3) of [5].
Standard techniques [2] show that

(Ka(p+ie™Py)| =)~ 4]

with
r=cW)[IVyl +1V2l +% 1Vl

1Ve, and ||V%|, are defined by Eq. (6.3) of [5]. Using Egq.(5.14),
hypotheses (H1) and (H2), and our definition of u, we see

r=o(¢g) (5.15)
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The same bound holds for K,(¢ +ic~"*y) and K°%(@). So for sufficiently
small ¢,  will be less than 1, which implies that all our Mayer series con-
verge.

We claim { ) is a sine-Gordon probability measure. (See Definition 5.1
of [5].) To see this we think of exp[W(¢)] as a partition function of a system
with four species in an imaginary external field —ic ~'/%g. Two of the species
come from the > 2 K)%¢) term and the other two from the
(1/¢) [, :cos(\/¢ ¢):[cosh(y) — 1] term. By undoing the Mayer expansion
exp{W(9)]| can be written as

[ dv(p) explig(p)]

J

for some positive measure dv. (See step 2 of the proof in Appendix A for
details.) Thus { ) is a sine-Gordon measure.

Step 3 [Proof of Eq. (5.8)]. From Egs. (4.9) and (5.4)

Eeme| S Vi)t > 400|610
iz

1<i<jg<m

It follows easily from Eq. (5.12), hypothesis (HS), and the choice of ¢ that
E' =o0() (5.17)

This proves Eq. (5.8).

Step 4 [Bounding R(¢)]. We separate out the n = 1 term in the Mayer
series in R(¢). Note that

Ko+ 87 2) =303 | v sexpli Vo 3]s explow — ey (5, )
b4

1 (5.18)
Ki§)= | dxscos(y/e §):
So
R()=R,(9) + R,(9)
with
R)= Y RelK, (6 +is~"p) — K%9)]
"= (5.19)

R,(9) =2L62 L dx :cos(\/;: g)e” ®letren 1]
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We will show
R(¢)=0o(1) for i=1,2 (5.20)

We bound R,(¢) by bounding [K,(¢ +ie~"*y)—K,(4). This is a
difference of two Mayer series, so we can use Lemma A.1 of [5]. We apply
the lemma with

i
Vilx, 7)=——=1x)
Ve
(5.21)

7,06, 7) == () + 4y (5 7)

Then

il =2@E")

(I V,l_ is the sup norm of the negative part of the real part of V,.) Using
wEL'ML® and Egs. (5.12) and (5.13)

Zjdxlexp{—sfl(x, »l—-1=2(1) (5.22)

So the lemma says
(K (f +ie~"?w) — Ko@) = 2~ )(r')" !

Since r = o(¢) [see Eq. (5.15)], ' = o(¢). Hence

18

K6 + 16~ "y) — K@) = or(1) (5.23)

n=2

This proves Eq. (5.20) for i = 1.
Equations (5.12) and (5.13) imply
[ dx lexp[~edy(x, )]~ 1] = 0(e) (5.24)
A
Along with

os(y/2 )1 <exp ()

this implies Eq. (5.20) for i = 2.
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Step 5 |Bounding I(¢)]. Using C~' = —4 + p*44 and the fact that v
solves the PDE (3.4) we have

166) =~ [ Ve glsinh(y) w4y

+

iP1e

Im[K, (¢ +ie~"*y) — K3(9)] (5.25)

1

As with R(¢) we separate out the n =1 term:
O ; 1,(¢)
1@) =] Ve 6= sin(/ ¢)] sinh(y)

1@)=~"| Ve oady

- (5.26)
1) = X Im[K, (¢ +ic )~ K3(@)
1,(0)= —2122}) '(A dx ZSin(\/é o) ye‘W’[e—sAy(x,?) . 1]
1(¢)=—~| Ve sinhy)
We will show
(I;(®)) = o(1) for i=1,2,3,and 4 (5.27)
and
(5@)) = o(A) (5.28)

First we show that this will complete our proof of Eq. (5.9). We have
(M@ 1) — 1] (MO — )|+ = 1) (5.29)
Using |e™ — 1| <] x|, (5.29) is
LMD TG + e — 1))

Our bound on R(¢), Eq. (5.20), is uniform in ¢. So together with Eqgs. (5.27)
and (5.28) it implies Eq. (5.9).
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To prove Eq. (5.27) for i =1 we use
(L@ <L O
Now
(1,67 = | dx| dysinbly()] sinlw(»)

X ({\/e $(x) — ssin[\/e 6(x)]:}{\/€ $(») — ssin[\/& ¢(y)1é>30)

By Lemma A.1 of Appendix A this is

3/2
:glz-fA dx | dy [sinh[y(x)] sinh[v(»)] 0(52)(1 T iyt>

Since sinh w € L' "L*® [see Eq. (3.10)],
1 3/2
jdxj dy |sinh[w(x)] sinh[w(»)]| (1 +I—x—_—y|—> <w  (531)

Equation (5.27) for i = 1 now follows.
For i =2 we use Cauchy—Schwartz as follows:

AL <= [ dx |42y (x) (e ()
By Theorem 5.2 of [5],

(0% (x)) <:1761_/u (5.32)

By our definition of u, both 4*/¢ and €/u— 0 as ¢ » 0. By (3.11), ddw € L".
So Eq. (5.27) is proven for i = 2.

I,(¢) and I,(¢) are bounded in exactly the same way that R,(¢) and
R,(¢) were in the previous step. For i =5 we have

Q1@ <[ _aelsinhle) oo

&

<% (4—@) " fmdx |sinh[y(x)]| (5.33)

822/37/5-6-4
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by Eq. (5.32). Since sinh w € L,
[ axsinnly ()] = o)

So Eq. (5.28) is proven.
Step 6 [Proof of Eq. (5.10)].

(1T exli V2 3,80 xplR(@) + 66) +5°@)]) -

=T+ T+ T,
where
= <ﬁ exp \/'5 ¢(yj R(¢)+zl(¢)[es’(dz) — 1]>
- <[:"] expli /e 6;9(y;)):[eR O+ 1]> (5.34)
7= (I expli Ve 8000l 1)
Equation (5.20) implies

‘eR(¢)+iI(¢)| =ﬂ(1)
And
[T expli Ve 6;0(3,)): i < exp (m fg—:;) =2(1) (5.35)

Jj=1

So to show T, is o(1) it suffices to show
&5 — 1| =0(1) {5.36)

S’(¢) is a difference of two Mayer series [Eq.(5.3)], so we can apply
Lemma A.1 of [5]. We do this with

1 7) = A7) = 800+ i)
I71(-)‘:a 7= _S(xs 7) —Ay(x,y) (5.37)

m
j=1
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The stability bound that V', is assumed to satisfy, Eq. (6.2) of [5], implies
Ve(x,7: ¥;,0;,)>—2B(e). So by hypothesis (H3) ¢|V,|_<2mB.
Hypotheses (H1) and (H2) and the choice of # imply

> [ dx expl o7, (5. )] — 11 = o(e")

So Lemma A.1 of [5] says
HORON G

Since r = o(e), r' = o(¢) and so
|S7(9) = o (e) (5.38)

which implies (5.36).

Using (5.35), the results of the previous two steps imply 7T, =
o(1) 4 o(A4).

We have

e [1ve S e ) 1)
+ <exp [:\/Ejﬁ1 5J.¢(yj)] ~ 1> (5.39)

The first term is (1) since g/u— 0 as ¢— 0. The absolute value of the
second term is

By the Cauchy-Schwartz inequality and Eq. (5.32), this is

£ 1/2
< (z)
4y

which is o(1). Hence T, is o(1), which completes the proof of
Eq. (5.10). |

<(|ve 3 a00)
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APPENDIX A

In this appendix we complete the proof in Section 5 by proving the
bound used on Eq. (5.30). This bound is as follows.

Lemma A.1. Let { ) be defined as in Section 5 [see Egs. (5.7) and
(5.5)]. Let 4 depend on ¢ as in Eq. (5.11). Then

((Ve (») ~ sin[v/e 9(»)]:HV/e 6(z) — :sin[y/ 9(2)]:})
)m (A1)

2
o(e%) <1 + =z

Discussion. 1t is not hard to use Theorem 5.2 of [S]| to show the
expectation in Eq. (A.1) is 2((¢/u)*®), which is Z2(e**~3?) by the definition of
4, Eq. (5.11). To show that the expectation is o(¢*) requires more than a
simple application of Theorem 5.2 of [5].

The troublesome factor of 1/¢ in the above arises from the short-range
behavior of the potential ¥, . Short-range problems are better handled with
the Mayer expansion than the sine-Gordon transformation. To implement
this philosophy we write the Coulomb potential as

1
i 7100 + 75.5(x) + 73(x)
with
_ T—exp(Ax/7)
7 %) = T
7 )= exp(—ixi/z)n—' ;ixp(—IXI/ﬂ) (A.2)
_ exp(—|x|/m)
7(x) = W
and y > u.

Until now we have been treating 7 as part of the long-range part of
the interaction and applying the sine-Gordon transformation to it. In the
proof below we will treat 7, as part of the short-range interaction. The
parameter y will be small but fixed. So the bounds on moments obtained
from Theorem 5.2 of [5] will not have any & dependence.

The reason we did not split up the Coulomb potential in this new way
from the beginning is that for the translation ¢— ¢ +ie~ "y used in
Section 5 to succeed, the part of the Coulomb interaction that is included in
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the Mayer expansion rather than the sine-Gordon transformation must go to
zero sufficiently fast. With more work one can improve the bound (A.1). The
bound stated is sufficient for our purposes.

Proof. Step 1 (Taylor’s Theorem). For A, 6 € [—1, 1] let
G(A, d) = (1@ Veow) 1pl8Ver (@)
H(4,8)=3[G(—A, 0) — G(4, 9)] (A.3)
= (ssinfA /& §(»)]::sin[6 /€ 9(2)]:)

since { ) is even in ¢. Then

{{Ve ¢(»)— ssin[\/e ¢(y>1:}{¢5 ¢(z> — ssin[\/e (2)]:})

0*H oH
=H(, 1)+ 53 08 0,0)— 81 (O, 1)——57(1,0)

Since H is odd in 4 and J, Taylor’s theorem says this

1l 9°H (1 /l)2 (1 —9)?
= A dd A4
j 0 OA% 06° *.9) 2 d (A4)
Let
Z(4,0) = J du @A Veo) et Veo(D); oW(®) (A.5)
with W(¢) defined as in Eq. (5.5). Then
Z(4,90)
A =
To prove the lemma it suffices to show
36 , 3/2

Step 2 (Redoing sine-Gordon). Equation (5.5) for W(g) shows that
we can think of exp|{W(d)] as the partition function of a system with four
species. We label the species by a =1, 2, 3, 4. Species a = 1, 2 come from
the Mayer series in (5.5), and species a¢=3,4 come from the term
containing :cos(y/¢ ¢): in (5.5).
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Species @ = 3,4 have a “spatially dependent activity” [cosh{y)— 1]. So
we define a measure dv(x, ) on 4 X {1,2, 3,4} by

[av (o) Fa)= X | dxF(x,a)

+ Y fdxF(x,a){cosh[w(x)}—l}

a=3,4

All four species interact with the potential —ie ™ /?¢(x). Let

y(1)=y(3)=+1
22) = y(4) =~1

So y(a) is the charge of species a. Particles of species 1 and 2 interact by the
two-body interaction V.

We undo the Mayer expansion and sine-Gordon transformation in our
expression for z(4, 8). Then we redo the transformation and expansion with
7, included in the Mayer expansion rather than the sine-Gordon transfor-
mation. This is a straightforward calculation, so we omit the details.

Let 7,,, 7,5, and 77, be defined as in Eq. {A.2). Let di, ¢(x) be a
Gaussian process with covariance 77, (x — y). Then

2(.,0) = | di 2(3, 4, 9) (A7)

with
Z (4, 8, 9) = exp[—ek 07 5(y — z)]:explit /e $(3)]:
X exp[id \/€ ¢(z)]: exp { i K, (4,4, ¢)} (A.8)

In the Mayer series > 7, K, (4, J, ¢} the two-body potential is
Ya) ya’) 7 s(x — x7) + Vs, y(a); x7, y(a’))
Vox,a; x',a') = ifeanda’ € (1,2}
wWa) pa'Y 7 s(x —x') otherwise (A.9)

The one-body potential is

V%, ) = —ie~/9(@) §(x) + (@) 73 5(x — )
+ 3Y(a) 7 5(x — 2) (A.10)
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Throughout this appendix K, will refer to K,(4, d, ¢), not to the Mayer
series that was defined in Section 4. The Brydges and Federbush [2] form of
the Mayer series is

Ky, 9, ¢)= (—_f%: (22)n Z ( do f(n, U)J‘n I75(77)
X exp[—€P3(0)] U(o) expli /& @ — (A7, + 677)]
(A.11)
with
fn =ﬁJdV(x,-,a,~) (A.12)
é=exp [— gfz—yJ € (A.13)

¢ = Z P(e) 9(x;)
7,= Z P@) 7 ps(x;~ )

and 7, defined similarly. The rest of the notation in Eq. (A.11) is defined as
in Eq.(A.2) of [5], except that wherever V', appears in [5] we have
Vy+ V,s. Rather than repeat the definitions in [5], we give a verbal
description of various terms. ', is a sum over tree graphs. [ do is an integral
over the interpolation parameters s,,S,,...5,_,. f(#,0) is a product of
various s;. I7S(77) is a product over the n — 1 bonds in # of the two-body
interactions associated with each bond. The term exp|—eV2(0)] U(o) is
exp[—¢ Y., Vs(i, /)] with the interpolation parameters s, inserted in the
appropriate manner. U(c) contains the repulsive part of FV,, while
exp[—&V3(0)] contains the rest of V.

Step 3 (The Strategy). Let
Flh 8,9) =64 07 15(y = 2) 4+ A7 s+ i0/e 900)

+52;7y+i5\/5¢(z) (A.14)

F(A,6,0)=F,A,0,0)+ i K,,0,¢) (A.15)

So
Z(4,6,8) =exp[F(4, 9, )]
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Define ( )’ by
@) =2(0,0)"" | di I(9) exp[F(0, 0, )] (A.16)

Then
G(4, 0) = (exp[F(4, 9, ) — F(0,0,9)])

So 9°G(4, §)/3°1. %5 is a sum of terms of the form

(111,50 xplF.8,6) - FO.0,01) (A17)
Each @, is a pair of nonnegative integers indicating the number of 4 and
derivatives, respectively. So }_, a; = (3, 3).

We will show that each 8*F contributes Z(¢"/**°71%1y to our bound on
(A.17) with 6’ > 0. |a| is the sum of the two components of a. Each 6*F can
also contribute a factor of (1 + 1/]y — z|)!*'”* to our bound on (A.17). Since
Y la;| =6, we end up with the bound o(e*)[1 + 1/|y — z|}*%.

Step 4 [Handling ¢(x)’s]. Derivatives with respect to A or & can
introduce factors of ¢(x) in the { )" in (A.17). We bound these as follows. In
step 8 we will show

exp[F(4, 0, 6) — F(0,0,9)]| = (1) (A.18)

A little thought shows F(0, 0, ¢) is real and { )’ is a sine-Gordon probability
measure. Using Holder’s inequality and Theorem 5.2 of [5]

([Towewira, .0 - F0.0.01) | <2001 (419)

Since 77,(0) = 1/4zy and y is fixed, we see that a factor of [ J/L, ¢(x;) in
(A.17) simply contributes a constant to our bound. This constant depends on
m, but m will be at most 12.

Step 5 (Derivatives of F,). From

1 1 1

7 (0) = —_— L
25(0) dmu 47zy<47r,u
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and the definition of g, Eq. (5.11), we have

&
755l < Gz =¢"""" (A.20)

81/2+5

Since d < 1/6, 1/2— 6 > 1/3. From Eq. (A.2) we also have the bound

1

|7 1s(y —2)| <m

(A.21)

0°F, is not zero only for |a| =1 or 2. Equation (A.20) and step 4 easily
establish the bound described at the end of step 3 for all a except @ = (1, 1).
0WVF,=—67,4(y —z). We bound this case using both Egs. (A.20) and
(A21).

1671 (y —2)| =67 5(y — 2)|"? |71 5(v — 2)|'*

1/2
<61/4—¢S/261/2 [ 1 ]
4n |y —z|

Since 6 < 1/6, 1/4 —6/2 + 1/2 > 2/3 = |a|/3. We note that this is the only
place where &% can contribute powers of 1/|y — z|.

Step 6 (Derivatives of }_, K,). The usual techniques show
K4, 6,8) <) || r! (A.22)
with r=2(1) p and
p=2u%+c et et 4 dy? (A.23)

(See the beginning of the proof in Appendix B for more details.) We can pick
y small but fixed so that for sufficiently small ¢, r  1/2. So the Mayer series
in (A.8) converges.

Our bound on 9°K, must be better than this bound on K, in three
ways. First, we must gain an extra factor of ¢ to cancel the Z(e~') in
(A.22). Second, we must gain a factor of @(g'**%’) for each derivative in
0% Third, our bound on #°K, must be uniform in 4. It cannot contain a
factor of |A| like (A.22).

To gain the needed extra factor of & we split up K,,.

K,= i K:l
K= (5) Slaesmo [ 7mver, (A20)
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1, = exp[—eP%(0)] — 1} expli /e @] expl—eA7; — 207,
I,={exp[i\/e @] — 1 —i/e &} exp|—eA?’, — e677,]

I, =exp{—eA7, — 07, + [eA7, + €67) — 1

I,=i\/s Dlexp[—e7, — 67| — 1}

Iy =—eA7, — 07,

Ii=1+i\e® (A.25)

K? is independent of A and &, so we can forget about it. We bound ¢°K? in
the next step. For K}, K2, K}, and K we gain the needed extra factor of ¢
as follows.

exp[—eP%0)] — 1 = —£V%(0) f dt exp|—teV3(0)] (A.26)

lexpliv/e @] — 1 —i sd’\g—g—dﬂ (A27)
exp|—eA7", — 07| + [eA7, + &07,] — 1
=237, + 67) jol (1 — 1) exp[—te(\7, + 677)] dt  (A.28)
exp|—£A7, — 657;] ~ 1

1
= —£(7; +877) | exp| 107 + 677)) di (A.29)
0

Note that in addition to the needed extra factor of ¢ we gain an additional ¢
in K3, while K% contains an additional v/e.

In K}, K2, K2, and K} derivatives with respect to A or § can act on the
A or J in the exponential and bring down factors of &7, or 7. We use
Eq. (A.20) to extract #(¢'?*?") from these factors. In K] two of the
derivatives in &* can act on the (A7, 4+ 677)* term. The extra factor of ¢
from Eq. (A.28) gives a factor of £'/? for each such derivative. In K¢ one of
the derivatives in ¢* can act on the factor of (A7, + 677) outside the dt
integral. The extra factor of \/¢ is associated with this derivative.

Each of @, 77, and 7 contain n terms. So our bounds for 8"Kﬁl will
contain polynomials in n. This is not a problem since

P(n)r"~' < o

i s

—

for any polynomial P(n) and r < 1.
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In K! and K> we avoid a factor of {4] in our bound on 8°K, by
keeping one of the factors of €7, or €7, brought down by ¢* rather than
using Eq. (A.20). Then we use Egs. (B.1) and (B.2) of Lemma B.1 to bound
the " integral. We bound the [” integral in K} and K, using Egs. (B.3) and
(B.2) of LemmaB.l. The factors of (A7, +077)* and (A7, +67) in
(A.28) and (A.29) prevent a factor of |4| in these bounds.

Step 7 (Bounding 8°K3). Recall that Vg is Vs + V,s. So we can
expand V(n) as a sum of 2"~ ! terms. We separate out the one term which
has the potential V, ¢ associated with every bond in #. It is

n—1

Vi) = Ij Vst + 1,7() (A.30)

We let the sum of the other 2" 7' — 1 terms be V*(n), so

Vsm)= V') +Vi(n) (A.31)

We will show that the V!(n) part of K3 is 0. The V*(5) part of K, will -0 as
¢ — 0 since each term in V() contains at least one factor of V(i + 1, n(i)),
which -0 as ¢ - 0.

Consider

Vi) UQ)A7, + 677) (A.32)

We claim that when summed over a;,..., a, it gives zero. {A.32) is a sum of
2n terms like

Vi(n) Ulo) Ay(a) 775(x: — ) (A.33)

Every tree graph » has at least two vertices which have only one line hitting
them. Let j be such a vertex with j not equal to i.

Consider the sum of (A.33) over a;. The only factor in (A.33) which
depends on q; is V(). (One of the hypotheses on V, is that the repulsive
part of ¥, is independent of the species of the particles. See p. 279 of [5]. So
U(o) is independent of a;). ¥"'(n) contains exactly one factor of y(a;) since
only one line hits vertex j. Hence

S Vim=0
This proves our claim.

Thus we can replace V¢(n) by V*(n) in K3. §2K3 is nonzero only for

|a|=1. I, already contains the needed extra factor of &. Equation (B.4) of

Lemma B.1 provides another factor of ¢ to go with the single derivative
in 0%,
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Step 8. We prove Eq. (A.18) from step 4. It is easy to check that
|exp[Fo(4, 0, 8) )| = (1)

So it suffices to show

18

[Kn('L 5’ ¢) -Kn(o’ 0, ¢)] ’ =ﬁ(1)

il
-

n

We use

K, (4. 5,6) = K,(0,0,6)= [ %K,,(m, 15, 9) dt

The d/dt brings down a factor of —g(A7, + 677,). This gives the needed extra
factor of &. The [” integral is bounded using Eq. {B.2) of Lemma B.1. I

APPENDIX B

We prove the bounds on Mayer graphs that were used in the proof in
Appendix A.

Lemma B.1. Let [", V,(n) and U(c) be defined as in Appendix A.
[See Eq. (A.12) and step 2 of the proof in Appendix A.] Then for x, x' € R*
and 1< i, j, k <n we have the following estimates:

(17 U) P30, 1) 75 = 0] = 2D " (B.D)
(1740 U@ 750~ 0] =2 (B2)

["1750) U0) 75— 1) 725y — x) = 2(1)p"' (B3)
(170 U0 7 -0l =0@p"? B4

¥2(n) is defined in step 7 of Appendix A. p is given by Eq. (A.23).

Proof. We begin by reviewing the usual technigne for bounding

["174m) UGo)

We think of # as a tree graph, e.g., see Fig. 1. Starting with the vertices
which have only one line attached to them, we use hypotheses (H1) and
(H2) to bound the integrations over the associated (x;, a;) by p.
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Fig. 1. A typical tree graph #.

We repeat this procedure until all of the lines in the tree have been
bounded. There are n — 1 lines, so we end up with a bound of p"~'. The last
integration gives

[ dv (i a) =414

Note that you can take any vertex to be the base of the tree, and so bound
the corresponding integration last.

To prove (B.2) we take vertex { as the base of the tree graph. We
proceed as above, ending up with

[ dv (xi, ) |75, — %)

This integral is ¢Z(1) by explicit computation.
To prove (B.3) we use the Cauchy Schwartz inequality to reduce it to
the case of i = j, x = x'. We proceed as before, ending up with

[ av (@) 177506 — 2

which is Z(1).

We prove (B.4) in the same manner as (B.2). However, at least one of
the lines in # corresponds to just Vg rather than Vg =V + V,¢. By (HI)
and (H2) such lines will contribute o(g) instead of just p.

The proof of (B.1) is slightly more complicated. We represent ¥ by a
dashed line. So Fg(n) V3(/, k) is the Mayer graph # with a dashed line from
vertex j to vertex k£ added. We take vertex i as the base of the tree. We bound
integrations over vertices with only one line as before. However, the graph
now has a loop in it. So we end up with the graph shown in Fig. 2. Of
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k
4
/
s/
Vs
L7
] T
m
‘ Fig. 2. The #¢(j, k) term, represented by a —~—, introduces a
l loop in the graph. The . - stands for an unspecified
i number of repetitions of -

course, one of j or k can equal m, but not both. Assume j is not equal to m.
We break the loop by applying the Cauchy—Schwartz inequality to the
integration over vertex j. The resulting integrals are bounded by hypothesis
(H4) and the computation

[ dx|1730) + 7350 = 2(1)

We fail to gain a factor of p from the line hitting vertex j when we do this.
Having broken the loop we continue as before. |
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