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Mean Field Theory for Coulomb Systems 
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We study a classical charge symmetric system with an external charge 
distribution q in three dimensions in the limit that the plasma parameter 
e~  zero. We prove that if q is scaled appropriately then the correlation 
functions converge pointwise to those of an ideal gas in the external mean field 
7t(x) where ~ is given by 

-AkU+ 2z sinh(fl7 t) = q 

This is the mean field equation of Debye and Hfickel. The proof uses the sine- 
Gordon transformation, the Mayer expansion, and a correlation inequality. 

KEY WORDS: Debye-Hfickel theory; Coulomb systems; mean field theory; 
sine-Gordon transformation; Mayer expansion. 

1. INTRODUCTION 

As in [5] we study a classical charge symmetric Coulomb system in three 
dimensions in the limit that ~ tends to zero. E is the plasma parameter 

=/~//D (1.1) 

where fl is the inverse temperature, and l o is the Debye length 

lD = (2flz) -1/2 (1.2) 

z is the chemical activity. Unlike [5], we include an external charge 
distribution q(x) in our system. Debye and H/ickel [3] used a mean field 
approximation to study this limit. Our main theorem, Theorem 3.1, says that 
if we scale the charge distribution q(x) appropriately then in the limit of e 
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tending to zero the correlation functions of our system converge pointwise to 
those of an ideal gas in an external mean field kU(x). ~u is given by 

-A  ~g + 2z sinh(fl7 0 = q (1.3) 

The sine-Gordon transformation expresses the partition function as a 
functional integral 

Z= f dlaexp 12z ~Adx:cos[vFfl O(x)]:+iJ'dx,v/fl ~(x)q(x)l 

where d~t is a Gaussian measure whose covariance is essentially 1/Ix--y h. 
The integrand of this functional integral is the partition function of an ideal 
gas in an imaginary external potential. Thus the sine-Gordon transformation 
expresses our system as the average of an ideal gas over different imaginary 
external potentials. After a scaling argument we will find that each term in 
the exponential contains a factor of l/e, as does the inverse of the covariance 
of dp. So we should look for stationary points of the functional integral. 
There is one stationary point, and it is given by 

AO - 2z "v@ sin(v/fl 0) + i V/fl q = 0 

Comparing this PDE and Eq. (1.3) we see that the dominant term in the 
functional integral (1.4) is given by 4 = i Vffi ~. 

In [5] we studied the same system without an external charge 
distribution q. This paper should be regarded as complementary to [5] rather 
than a continuation of [51. The only parts of [5] that we will use explicitly 
are the correlation inequalities of Section 5 of [5] and the discussion of the 
Mayer expansion in Appendix A of [5]. 

To make the Coulomb system stable we must add a short-range 
potential, e.g., hard cores, to the Coulomb potential. No such short-range 
potential appears in the Debye-Hiickel theory, so we will let the short-range 
potential tend to zero as e tends to zero. We require the same hypotheses on 
this short-range potential that we did in Section 6 of [5 ]. 

The sine-Gordon transformation introduces functional integrals that 
must be controlled. We do this using a correlation inequality from [5]. This 
inequality is an extension of an inequality of Fr6hlich and Park [4]. Another 
approach to controlling the functional integrals is to use the cluster 
expansion of Brydges and Federbush [1]. The main advantage of our 
approach is its simplicity. Our approach allows several types of boundary 
conditions while the cluster expansion has only been carried out for Dirichlet 
boundary conditions. The main advantage of the cluster expansion is that it 
can handle the non-charge-symmetric case while our approach cannot. 
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We end our introduction with an outline of the paper. In Section 2 we 
define the Coulomb system. In Section 3 we state our main theorem and 
briefly study the PDE (1.3). In Section 4 we use the sine-Gordon transfor- 
mation and the Mayer expansion to rewrite the partition function and the 
correlation functions as functional integrals. We then use these results to give 
a nonrigorous derivation of our main result. We prove our main result in 
Section 5. The more technical parts of this proof are relegated to Appen- 
dices A and B. 

2. THE SYSTEM 

Our system consists of two species of particles with equal chemical 
activities z and charges +1. We include an external charge distribution in 
our system. This charge distribution is specified by a real-valued function 
q(x) on ~3. We will assume q(x) is a C ~ function with compact support. 

The particles interact with each other via the two-body potential 

;,6 
V(x, y; y, 6) - 4re Ix - y[ + V,(x, y; y, 6) (2.1) 

where x, y E  ~3 are the positions of the particles and y, 6 C  { -1 ,+1}  are 
their charges. V~ is a short-range potential which depends on e and tends to 
zero as e tends to zero. For example, Ve can be the hard-core potential 

if jx-yl<2Co lo V,(x, y; y, 6)= 
otherwise 

(% is a constant.) The specific hypotheses that V~ must satisfy for our 
theorem are the same as those in [5]. (See the beginning of Section 6 of [5].) 

The particles interact with the external charge distribution only through 
the Coulomb potential 1/4~r t x - y l .  The potential 1/4• I x - y l  is the kernel 
of -1/A where A has free boundary conditions. We use free boundary 
conditions only for convenience. Our theorem is also true for Dirichlet and 
periodic boundary conditions. 

For a volume A ~ ~ 3 we denote the grand canonical partition function 
by Zq(A). The correlation function for m particles at Yl . . . . .  Ym E N3 with 

, . . . ,  ~(m) ( v .  , , charges 61 6mE { - i , + 1 }  is denoted by pa,qt:, ... Ym'61,'",6m)" Zq(A) 
and n('~) are defined in the usual way using the potential energy P'A,q 

U n ( X l  .... .  Xn ; ~21 .....  ))n) : ~ g ( X i ,  )l i ; X j ,  ~lj) 
l~<i<j~n 

1 
+ ,=~ 7 i fdx  4rc lx i_x lq(x)+ Q (2.2) 
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where 

1 f d x f d y q ( x )  1 
Q = -2 47~ Ix - y [  q(y) 

For example, see Eqs. (2.4) and (2.6) of [5]. We assume A is large enough 
that it contains the support of q. 

We will denote the infinite volume limit of the correlation functions by 
dropping the subscript A. With Dirichlet boundary conditions and a wide 
class of short range interactions V,, these limits were shown to exist by 
Brydges and Federbush [1]. For arbitrary boundary conditions but special 
choices of V~ the existence of these limits was proven by Fr6hlich and 
Park [4]. We assume that some infinite volume limit of our correlation 
functions exists. The only condition we need on how A -4 ~ 3 for our result is 
that bounded sets are eventually contained in A. 

3. STATEMENT OF RESULT 

In the theory of Debye and H/ickel [6, pp. 239-242] the mean field 
kU(x) is given by 

- A  ~(x) + 2z sinh[fl~U(x)] = q(x) (3.1) 

If we work in units with 1D = 1, then fl = e and z = (2e)-1. So in the limit 
that e --+ O, 7* will be given by the linear equation 

(-A + l[~Z)7 t = q 

This linearized theory was studied in [5]. To see nonlinear effects we must 
increase q as e -4 0. 

Without an external charge distribution the densities of the two species 
of particles are asymptotic to z as e-4 0 ]Theorem 3.3 of 5]. So it is natural 
to multiply q by z. For later convenience we will multiply q by 2z. Then 
(3.1) becomes 

- A  7~(x) + 2z sinh[fl~U(x)] = 2zq(x) (3.2) 

Let 

Then (3.2) becomes 

~(x) =/~ ~U(xg) 
(3.3) 

4(x) = q(xlD) 

-A~, + sinh ~, = q 

Our main result is the following theorem. 

(3.4) 
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Theorem 3.1. Let ~ be C ~ with compact support. Let ~, be given by 
Eq. (3.4). Let 

q(x) = ~(x/lD) (3.5) 

Let Yl . . . . .  Ym be distinct points in [R 3 and 61  . . . .  , 6,, ~ {-1,  +1 }. Then for any 
choice of potentials V, satisfying hypotheses (HI)  through (H5) of [5] (see 
p. 279 of [5]) 

p(m)(",l,~, ,ymlD;61,...,6m)~Zmexp[ ~__ 6jgt(yj)] 2 z q k J ' ~  ~ "'" 
L j ~ 1  

as e--, 0 in the sense that 

h m z  pzzq(yllD,...)-exp- 6:qJ(yj 
~-*0 

(3.6) 

We remind the reader that t~(m) is the infinite volume limit of the k" 2 z q  

correlation function. So in our theorem the infinite volume limit is taken 
before the e ~ 0 limit. 

Theorem 3.1 assumes that the PDE (3.4) has a solution for q E C~ ~ 
Standard techniques in the theory of PDEs can be used to prove the 
following lemma. 

Lemma 3.2. If ~C  C~(N3), then Eq. (3.4) has a unique, bounded 
C OO solution ~, which is in all the Sobolev spaces, i.e., 

d3x ~(x)(-A + 1) 'n ~t(x) < oo for m = 0, 1, 2 .... (3.7) 

Moreover, 

I ~(x)l < (-A + 1)-1 J~l (x) for all x C [ ~  ~ (3.8) 

We sketch a few ideas that can be used to prove Lemma 3.2. Formally, 
qJ should be the minimum of 

E(~) is a convex, lower semicontinuous functional on 
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~+a  is the Sobolev space of L 2 functions whose distributional first 
derivatives a r e  L 2 functions. By a standard theorem [9] there is a unique 
which minimizes E(r 

We would like to use the usual bootstrap argument to show that since c7 
is in all the Sobolev spaces then so is qJ. The exponential growth of the sinh 
function and its derivatives could cause problems in this argument. However, 
by the maximum principle and the fact that sinh(x) - x/> 0 for all x >/0, we 
have the a priori bound 

sup I ~,(x)l ~< sup I~(x)l (3,9) 
X X 

So the exponential growth of sinh(x) is irrelevant. 
One way to prove inequality (3.8) is as follows. Let 

sinh [~,(x)] V(x)- 
~,(x) 

Then the PDE can be written 

-A~ ,+  v ~ , = ~  

Note that V(x)>/1 for all x. So the Feynman-Kac formula implies that the 
kernel of (-A + V) -1 is pointwise bounded by the kernel of ( -A + 1) ~. The 
bound (3.8) follows. 

For later reference we summarize some consequences of Lemma 3.2. By 
inequality (3.8), ~,(x) decays exponentially with the distance from x to the 
support of ~. Since q/C L oo this implies gt ~ L 1. ty being in L ~ ~ L ~ implies 

sinh qJ E L 1 ~ L  ~ (3.10) 

Using the PDE one computes 

AA~/= cosh ~,[sinh ~, - ~] + sinh(gt)(Vgt) �9 (V~,) - A ~  

Lemma 3.2 and the above results show this is in L~. So 

AAgtC L 1 (3.11) 

4. THE SINE-GORDON TRANSFORMATION 

As in [5] we follow Brydges and Federbush [1] and apply the sine- 
Gordon transformation to the long-range part of the interaction and use a 
Mayer expansion for the short-range part. We refer the reader to Appendix A 
of [5] for the details of the Mayer series. That appendix uses Brydges and 
Federbush's development of the Mayer series [2]. 



Mean Field Theory for Coulomb Systems 535 

We take the short- and long-range parts of the Coulomb interaction to 
be 

~ ( x )  = 

~ ( x )  - 

1 -- exp(--Ix I/gl,) 

4~z Ixl 
(4.1) 

exp(-Ixl/#lo) 

4 " 1 x ]  

Let 

VL(x, ~,; y ,  ~) = ;,,~ ~ ~ ( x  - y )  

V~(x,  ~,; y ,  6) = ~,~ ~ ( x  - y )  
(4.2) 

So 

V =  VL + Vr + V~ 

We define the total short-range interaction to be 

V s = V r + V, (4.3) 

As a guide to our notation we offer the following. L, Y, and S stand for 
long, Yukawa, and short, respectively. We have labeled the short-range part 
of the Coulomb interaction as Vy rather than V s since there is another short- 
range potential, namely, V,. So V s is used for the sum of these two short- 
range potentials. We will use the subscripts L, Y, and S in this way with 
other quantities. 

In Section 2 we defined Z q ( A )  and [JA,q'̂ (m) Our theorem concerns t~(m)FA,2zq, 
SO in this section we will carry out the sine-Gordon transformation for 

,(m) It is convenient to work in units with l v = 1. (See p. 280 12zq(A ) and [I A,Zz q,  

of [5] for the details of how this is done.) This amounts to setting l 9 = 1, 
fl = e, 2z = e -  1 and replacing q by c~. We should also replace A by l D 11t. To 
avoid this factor of lD 1 we will write down expressions for Z2zq(IDA ) and 
n(m) We can do this since we take the infinite volume limit ~ (m) Ot PlDA,2zq k" IDA , 2zq ~ 
before we let ~ ~ 0. 

We split the field generated by q and the self-energy of q into short- and 
long-range parts: 

1 
A ~(x, 7) = Y f dy ~v (x  - Y) -~ q(Y) (4.4) 

Q v = 2 f d x f d y  1 1 -~- q(x) ~ r ( x  -- y) ~ -  q(Y) (4.5) 
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AL(x, y) and Qr are defined similarly. We will use i to stand for x i, Yi. For 
example, VL(i, j) is VL(Xi, Yi; Xj, yj). 

The function C(x, y)= ~'L(x- Y) is the kernel of the positive operator 

C =  
1 1 

- a  - 4  + (ag)  -2 

Hence there exists a Gaussian process with covariance C(x, y), i.e., there 
exists a probability measure d~ and a Gaussian random variable ~(x) for 
each x C ~3 such that f dp O(x) O(Y) = C(x, y). See pp. 16-17 of [7]. 

In integrations with respect to Lebesgue measure we will often suppress 
the dx and the (x) in r For example, 

We will follow the usual convention of using ~ to denote a point in the 
measure space on which d/~ is defined. So F(ql) is a function on this measure 
space, and supo IF(O)l is the sup of IF(O)I over the measure space. 

The sine-Gordon transformation says 

= f aV Z(O) 

with 

i 

where s = z exp(~/87r~), fa dnx = fa dxl.., fa dx, and each Yi is summed 
over + 1. The expression beginning with ~2n~0 is a partition function with a 
convergent Mayer series. So 

Z(~) = exp [-eQv+ i ~  V/~ ~ +  ~ Kn(0)} (4.7) 
n = l  

Kn(~) is given by Eq. (A.1) of [5] with the one-body interaction being 

i 
V l ( i )  : VI(Xi, ~]i) = aY(Xi ,  ~)i) V~ Y,O(Xi) (4.8) 

We will check the convergence of this Mayer series in Section 5. 
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For the correlation functions we let 

Qs = Qr + ~. Vs(y i, 3, ; yj, fis) + ~ ~ A v(yj, fis) (4.9) 
l<~i<j~m j=l 

As(x, ~) = At(x, y) + ~ Vs(x , y; yj, ~j) (4.10) 
j=l 

(~L and X L are defined by the same equations with V s replaced by V L , A v by 
At., and Qv by QL. We have 

(m) Ph~a,2=q(yllD,..., Ymlo; 61 ..... 6m) 

=zmZ2zq( lDA)- l f  dot ~I :exp[ iv~JO(Yj ) I :Z(O)  (4.11) 
j=l  

where Z(~) is given by the equation for Z(r Eq. (4.6), with Qr replaced by 
Qs and A r by -4s. The : : denotes normal ordering. (See p. 275 of [5] or 
pp. 9-11 of [8].) Note that 

z:exp [i k/~ 6fli(yj)]: = s exp [i V ~ 6j0(Yj)] 

Again, we have a convergent Mayer expansion: 

Z(0 ) = exp -eQ.s + - f V ~ Oq + K,(O) 
rt=l 

/s is given by Eq. (A.1) of [5] with 

(4.12) 

We 
nonrigorous derivation of our main result. This derivation 
introduction to the proof in the next section. 

If we let ~ ~ 0 as e -, O, then V s ~ O. Setting V s = O, 

K n ( 0 ) = k , ( O ) = 0  for n />2  

KI(0) = KI(0)= @ JA [- d x  :COS [V/~ 0(x)]: 

i 
Vl(i) = VI(X i, y,) = A s ( x  i, yi) ~ y i O ( x i )  (4.13) 

can use the results of the sine-Gordon transformation to give a 
serves as an 

(4.14) 

The measure d/~ is formally given by 

 +oxp 
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with 

Kennedy 

DO=N-' H dO(x) 
XE ~3 

where dO(x)  is Lebesgue measure with respect to the variable 0(x). So if we 
ignore the normal ordering 

z22o=f oexpl-@fo(- )o+Tjl, 
We change variables 0--* 8- ~/2 0. Then 

with 

(4.15) 

(4.16) 

As c--+ 0 the dominant contribution to this integral should come from the 
stationary point of S(0 ). It is given by the equation 

r s  
- o 

riO(x) 
o r  

(AO)(x)  - sin [0(x)] + iq (x )  = 0 (4.17) 

(for x ~ A). Letting 0 = iqt, the equation becomes 

-A~, + sinh ~, = 

which is Eq. (3.4), the mean field equation of Debye and Hfickel. 
The correlation functions are given by 

(m)  
P 2 z q ( Y l  lD .... ; r l  .... ) 

(4.18) 

The stationary point of this functional integral is the same as that of Z2z q. 
Evaluating ~Ij exp[irj0(Yj)] at the stationary point 0 = M, we have our main 
result 

p(m)(,, l~,  ~ z  m 2~q,yl ~ .-.) ~[ exp[-fifl/(yj)] (4.19) 
j- 
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5. P R O O F  

This section is devoted to the proof of Theorem 3.1. We will make 
frequent use of Section 5 and Appendix A of [5]. 

We will use the ~ and o- notation in the following way. A quantity F is 
~(e  p) if IFI ~ ee p for some constant e. e must be independent of A. In fact, e 
can only depend on the charge distribution ~, the integer m (the theorem 
concerns the ruth correlation function p(m)), the points y~ ..... Ym, and the 
constants e~, b l, e2, fi2, B, e 3 in hypotheses (H1) through (H5) on V e. F is 
o'(e p) if e can be replaced by f ( e )  where f is a positive function with 
l imt,  o+f(t  ) = O. f can only depend on the same quantities that e can depend 
on. As a special case of this notation, a quantity is ~ (1)  if it is a bounded 
function of everything except possibly c], m, y~ .... , ..l)m, el,  ~1, e2, 62, B, and 
e 3. If F = F ( 0  ) is a function on the probability space of our Gaussian 
process, then F=LY(e  p) or zr(e p) implies uniformity in gl as well. So 
r (o  ) = ~ ( e  p) means supo JF(gl)[ = ~Y(eP). 

We will use o~(A) to denote a quantity that ~0  as A - ~3. In general 
this quantity will depend on e and need not ~0  uniformly in e as A ~ P 3. 

Throughout the proof we will work with the finite volume correlation 
function (m) PE~q,t~A(YllD .... ). We will show 

z pE~q,lva(yllD .... ) - - exp  -- ~ fij~u(yj) =zr(1)  
j = l  

Letting A ~ ~ 3, this proves the theorem. 

with 

+ 

Step 1 (Complex Translation). The translation O --' O + ie-1/2qt yields 

Z2zq(lDA) = f dp exp IS(0 ) + E] (5.1) 

S(0) = - ~ + ~ V/~ r + z_ ~ K,(r + ie-'/2v/) 
n = l  

and 
z-mo m, lO,...) 

P2zq,loAkYl 

• j dp I~I :exp[i V ~ fis~t(yj)]: exp[S(~i)+ S'(r  + E + E ' ]  
j = l  

(5.2) 
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with 

S ' ( 0 )  = @ [/(n(0 Jr-i/~-l/2g t) - K,(ql  + i~--l/21ff')] 
~=1 

E' = -eQs  + eQr 

(5.3) 

(5.4) 

We split S(O) up as 

with 
s(o) =R(O) + iI(O) + W(O) 

R(r = ~ Re[K.(gl + i~-' /2~)--K~ 
rt=l 

l f a  : cos (@ r -- 1 l 
8 

+ - -  V~(Jq+ Im[K.(O+ie-1/2q/)-K~ 
" n= l  

1 fa :c~ O):[c~ W(O) = ~ K ~  
n=l  

(5.5) 

K~ is K,(~) with c~ set equal to zero. So the one-body potential in K](0) is 
i 

Vl(X, ~) -- u YO(x) (5.6) 
Ve 

As we will see later, R + / / i s  the part of S(ql) which is bounded as A ~ ~3 
and which ~0 as e ~ 0. The charge symmetry of our system implies that 
K~ is real, so R, I, and W are real. 

For a function F(O) on the measure space of dp we let 

Then 

(F(0)) = f dot F(~i) exp[W(0)] 
f dp exp[W(0)] (5.7) 

Z m_(m) i lD,... ) PZzq,tDA I, Y l  

exp [ 
j = l  

• (I-jim_ 1 :exp[i V/e ~j0(Yj)]: exp[R(0) + iI(O) + S'(0)])  
(exp[R(~) + iI(r 
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So the proof is reduced to showing 

E' = ~-(1) (5.8) 

(exp[R(0) + if(0)]) = 1 + tr(1) + Lr(A) (5.9) 

\4I m] :exp[i ~-  fii0(Yj)]: exp[R(O) + il(O) + S'(r 
j = l  

= 1 + tr(1) -t- tr(A) (5.10) 

Step 2 (Preliminaries). We let 

p = e  1/2+~ with 0 < f i <  1/6 (5.11) 

Then the various short-range forces all go to zero as ~ goes to zero. In 
particular, from Eq. (4.4) and 

f dx ~ ( x )  =u 2 

we have 

and 

Also, 

where II 

with 

ItAY[I1 ~ + r  z2 11~711, = e2~ I1r 

V~lf,= 2U ~ 

Ill for a two-body potential is defined by Eq. (6.3) of [5]. 
Standard techniques [2] show that 

Ig.(O + ie-' /2~')l = ~ ( e - l )  rn-I IAI 

1 
r = c~(1)[If V~ll, + II ~lr ,  § ~ IP V~ll~[ 

IIV~I[, and IIV~[l~ are defined by Eq. (6.3) of [5]. Using 
hypotheses (H1) and (H2), and our definition of p, we see 

r = ,~ (e )  

(5.12) 

( 5 . 1 3 )  

(5.14) 

Eq. (5.14), 

(5.15) 
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The same bound holds for K,( 0 + ie-1/2~,) and K~ So for sufficiently 
small c, r will be less than 1, which implies that all our Mayer series con- 
verge. 

We claim ( ) is a sine-Gordon probability measure. (See Definition 5.1 
of [5].) To see this we think of exp[W(O)] as a partition function of a system 
with four species in an imaginary external field -it-~/2ql. Two of the species 
come from the Y~ff=~K~ term and the other two from the 
(1/e)f  A :cos(x/~0):[cosh(q/)-1] term. By undoing the Mayer expansion 
exp[W(~)] can be written as 

; dr(p) exp [i(J(p)] 

for some positive measure dr. (See step 2 of the proof in Appendix A for 
details.) Thus ( ) is a sine-Gordon measure. 

Step 3 [Proof of Eq. (5.8)]. From Eqs. (4.9) and (5.4) 

E'=--e [ ~__ Vs(Yi,~i;yj,6j)+ ~ Ay(yj,3~) ] (5.16) 
1.< .<m j = l  l<J~. 

It follows easily from Eq. (5.12), hypothesis (H5), and the choice o f#  that 

This proves Eq. (5.8). 

Step 4 [Bounding R(0)]. 
series in R(#). Note that 

K~ = T 

So 

with 

E'  -- ~(~) (5.17) 

We separate out the n : 1 term in the Mayer 

dx :exp[i V ~ 7qi(x)]: exp [-?qJ - eAy(x, ~)1 

(5.18) 

dx :cos(v~ 0): 

R(O) -: R 1(0) + R2(O) 

Rl(ql)-  V' Re[K,( 0 + ie-l/zq~)-K~(r 
n = 2  

R2(0) =2e dx :cos(v/e r e - ~ [ e  -'A~(x'~ - 1] 

(5.19) 
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We will show 

Ri(0) = tr(1) for i =  1, 2 (5.20) 

We bound R~(0) by bounding IK,(O+it-l/z~)-K~ This is a 
difference of two Mayer series, so we can use Lemma A.1 of [5]. We apply 
the lemma with 

Then 

i 
v, (~ ,y)=  vqY0(x) 

1 
Vl(X, ~) = 7 )/~/(x) -~- Ay(X, ~)) 

(5.21) 

[[ Y, ll_ = o ( t  ') 

({I Till-  is the sup norm of the negative part of the real part of V~.) Using 
qJ~L~V~L ~ and Eqs. (5 .12)and (5.13) 

E f dx lexpf-~;,(x, y)] - 11 = 0(1) (5.22) 
Y 

So the lemma says 

IKn(O Av it -1/21//) - -  K~ = O(e - ' ) ( r ' )  n-2 

Since r = ~r(e) [see Eq. (5.15)], r ' =  zr(t). Hence 

OD 

- -  1 / 2  0 IK,(O + it ~') - K,(•)[ = o"(1) (5.23) 
n = 2  

This proves Eq. (5.20) for i = I. 
Equations (5.12) and (5.13) imply 

AdX lexp[-tAv(x, 7)] - 1[ = zr(e) (5.24) 

Along with 

this implies Eq. (5.20) for i = 2. 
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Step 5 [Bounding I(~)]. Using C -~ = - A  +p2AA and the fact that q/ 

and 

(lI,(q~)l) = o~(A) (5.28) 

First we show that this will complete our proof of Eq. (5.9). We have 

I(e ~(*)+u(*)) - I I < I(eR(O)(e "(*) - 1))1 + [(e R(*) - 1)t (5.29) 

Using ]e ix - 1[ 4 [xj, (5.29) is 

( e  R(*) I I (~ ) [ )  + ( ]e  R(*) _ l I) 

Our bound on R(O), Eq. (5.20), is uniform in ~. So together with Eqs. (5.27) 
and (5.28) it implies Eq. (5.9). 

solves the PDE (3.4) we have 

I(qt) = + f ~ O[sinh(~) -/.t2AAq/] 

+ ~ Im[K.(ql + ie-1/z~)-K~ (5.25) 
n = l  

As with R(0 ) we separate out the n = 1 term: 

5 

z(O) = l i(O) 
i = 1  

I1(0) = T IV ~ 0 - :sin(v/~ 0):] sinh(~,) 

~2 
I2(0) = - 7  v4 

(5.26) 

I3(~b ) = ~ Im[Kn( ~ + i~ I/2ql)- K~ 
.r  

n = 2  

14(qi) = ~ dx :sin(v/~ 0): ye-~O[e -~Y(x'v)- 1] 

I,(o)=l fAc,,/  O sinh( ) 

We will show 

([li(0)t) = ~ for i =  1, 2, 3, and 4 (5.27) 
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To prove Eq. (5.27) for i = 1 we use 

(111(0)t) ~< (11(0)2) 1/2 

Now 

(1t(0) 2) = ~2 fA dx fA dy sinh[~,(x)] sinh[q/(y)] 

• ({V/~ O(x) - :sin[v/~ O(x)]:}{V/~ O(Y) - :sin[v/~ O(Y)]:}) 
(5.30) 

By Lemma A.1 of Appendix A this is 

1 3/2 + 1 =-~ fA dx~A dYlsinh[~(x)]sinh[~(Y)][zr(e2)( 1 ~-2-~) 

Since sinh v / E L  1 ~ L  ~176 [see Eq. (3.10)], 

1 ) 3/2 
fdxfdyrsinh[~(x)] sinh[qJ(y)] I 1 + T ~ f ~ -  < oo (5.31) 

Equation (5.27) for i = 1 now follows. 
For i =  2 we use Cauchy-Schwartz  as follows: 

2 
(112(0)1) ~ flhEf dx Izlmlff(x)l (c02(x)) 1/2 

By Theorem 5.2 of [5], 

(/~02(X)) ~ ~ (5.32) 
4rc~t 

By our definition of C t, both/~2/e and e/gt ~ 0 as c ~ 0. By (3.11), AA~, C L 1. 
So Eq. (5.27) is proven for i = 2. 

I3(0) and I4(0) are bounded in exactly the same way that R1(0) and 
R2(0) were in the previous step. For i = 5 we have 

(11'(0)1) ~ + far dx l sinh[~(x) ]l@02(x) ) l/2 

<~ ~-- c dxlsinh[q/(x)]l (5.33) 

822/37/5-6-4 
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by Eq. (5.32). Since sinh ~tE L l, 

fAdx I sinh[~,(x)]l =- o'(A) 

So Eq. (5.28) is proven. 

Step 6 [Proof of Eq. (5.10)]. 

:exp[i V/~ ~jO(Yj)]: exp[R(O) + iI(O) + S'(•)] - 1 

= TI-~ T2"Jr T3 

where 

And 

T 1 = :exp[i ~ 6:0(y:)]: e"(O)+ur176 11 

T2= (F] :exp[i k/~ 6:O(yj)]:[e"(O)+u(~) -- l ] ) 

T3= ( f i  :exp[i v~ 6:O(Yj)]: - l ) 
j=l 

Equation (5.20) implies 

le~r176 I = : ( 1 )  

Kennedy 

(5.34) 

:exp[iv#eJjO(yj)]: ~<exp m =cY(1) (5.35) 

So to show T 1 is o-(1) it suffices to show 

le s'~) - 1 h = o~(1) (5.36) 

S'(0 ) is a difference of two Mayer series [Eq. (5.3)], so we can apply 
Lemma A.1 of [5]. We do this with 

VI(X , ~))= Ay(x, ~2)--@~ ~)O(x) ~ -+  ~)~l/(x) 

V~(x, y) =As(x, y) -At(x,  ?) (5.37) 
m 

-= Z Vs(X' y; YJ' (~J) 
j = l  
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The stability bound that V, is assumed to satisfy, Eq. (6.2) of [5], implies 
Vs(x,y;yj, fs)>/-ZB(e ). So by hypothesis (H3) e[[V~[[_~<ZmB. 
Hypotheses (HI) and (H2) and the choice of # imply 

f dx I exp[-eVl(x, y)] - 1[ = ~r(e 2) 

So Lemma A.1 of [5] says 

Js'(O)l ~< ~'(~) ~ (r') "-1 
n = l  

Since r - -~(e) ,  r'=/_r(e) and so 

I s'(O)l = ~(~)  (5.38) 

which implies (5.36). 
Using (5.35), the results of the previous two steps imply T2= 

z~(1) + ~(A). 
We have 

T3= (ex p {i~/~S~=l cfj0(yj)] [exp (m 8 @ p ) - - l ] )  

+ (exp ) 
The first term is tr(1) since e / / ~ 0  as e ~ 0 .  The absolute value of the 
second term is 

j = l  

By the Cauchy-Schwartz inequality and Eq. (5.32), this is 

which is ~r(1). Hence T 3 is ~(1), which completes the proof of 
Eq. (5.10). I 
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APPENDIX A 

In this appendix we complete the proof in Section 5 by proving the 
bound used on Eq. (5,30). This bound is as follows. 

I-emma A.1. Let ( ) be defined as in Section 5 [see Eqs, (5.7) and 
(5.5)]. Let g depend on e as in Eq. (5.11). Then 

({V ~ ~(y) -- : s i n [@ 0(y)]:}{,v/~ 0(z) -- :sin[x/~ O(z)]:}) 

=o~(e 2) 1 +  (A.1) 

Discussion. It is not hard to use Theorem 5.2 of [5] to show the 
expectation in Eq. (A. 1) is •((e/Ct)3), which is ~ (e  3/2- 3a) by the definition of 
p, Eq. (5.11). To show that the expectation is o~(e 2) requires more than a 
simple application of Theorem 5.2 of [5], 

The troublesome factor of l ip in the above arises from the short-range 
behavior of the potential V L. Short-range problems are better handled with 
the Mayer expansion than the sine-Gordon transformation, To implement 
this philosophy we write the Coulomb potential as 

1 
4~r [x I - ~ ' t t ( x )  + ~ s ( X )  + 7~r(x) 

with 

1 -- exp(--lx [/~) 
~ L ( x )  = 47c Ixl 

exp( -  I x I/7) - exp (-I x I//•) 
~;~Ls(X ) = 4~ I xt (A.2) 

exp(--Ixl/P) 
) - 

4 lxl 

and 7 > g- 
Until now we have been treating ~ s  as part of the long-range part of 

the interaction and applying the sine-Gordon transformation to it. In the 
proof below we will treat ~ s  as part of the short-range interaction. The 
parameter 7 will be small but fixed. So the bounds on moments obtained 
from Theorem 5.2 of [5] will not have any e dependence. 

The reason we did not split up the Coulomb potential in this new way 
from the beginning is that for the translation ~--*r + ie-1/2q, , used in 
Section 5 to succeed, the part of the Coulomb interaction that is included in 
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the Mayer expansion rather than the sine-Gordon transformation must go to 
zero sufficiently fast. With more work one can improve the bound (A. 1). The 
bound stated is sufficient for our purposes. 

Proof Step 1 (Taylor's Theorem). For 4, f i e  [--1, 1] let 

GO,, 6) = (:eiaX/7~)(Y)::ei'S'/?eo(z):) 

H(4, 6) = �89 [6(--4, 6) - 6(2, fi)] (A.3) 

= {:sin[4 V/~ 0(Y)] ::sin[6 V/~ 0(z)] :) 

since ( ) is even in 4. Then 

({V ~ qi(y) - : s in[v~ O(y)]:}{V/~ qi(z) - : s in[v~ O(z)]:}) 

cgZH c0H c~H 
= H(1 ,  1 )+  ~--~-~ (0, 0) ---~-~- (0, 1 ) - - - ~ - ( 1 ,  0) 

Since H is odd in 4 and 5, Taylor's theorem says this 

=f i f i  84' c96Hc963 ( 4 , 5 ) ( 1 -  4)22 (1 -- 5)2 d4 d f i 2  (1.4) 

Let 

Z(4, 5) = f d/2 :eiA ~f~o(y) : :eiS k/sco(z) : eW(O) (A.5) 

with W(ql) defined as in Eq. (5.5). Then 

6(4,  6) - z(4 ,  6) 
z(0 ,  o) 

To prove the lemma it suffices to show 

~4 3 ~ 3  6(4, ~) = o~(e 2) 1 + 
3/2 

(A.6) 

Step 2 (Redoing sine-Gordon). Equation (5.5) for W(O ) shows that 
we can think of exp[W(qt)] as the partition function of a system with four 
species. We label the species by a = 1, 2, 3, 4. Species a = 1, 2 come from 
the Mayer series in (5.5), and species a = 3 , 4  come from the term 
containing :cos(x/~ ql): in (5.5). 
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Species a = 3, 4 have a "spatially dependent activity" [cosh(~,) - 1 ]. So 
we define a measure dr(x, a) on A • {1, 2, 3, 4} by 

f dv(x,a)r(x,a)= ~ fA&F(x,a) 
a ~ l , 2  

+ 2 ( a~ F(x, a){cosh[~, (x)]  - 1} 
a = 3 , 4  "A 

All four species interact with the potential -ie-~/~O(x). Let 

y(1) = y(3) = +1 

7(2) = 7(4) = --1 

So 7(a) is the charge of species a. Particles of species 1 and 2 interact by the 
two-body interaction V s . 

We undo the Mayer expansion and sine-Gordon transformation in our 
expression for z(~, 5). Then we redo the transformation and expansion with 
~Ls included in the Mayer expansion rather than the sine-Gordon transfor- 
mation. This is a straightforward calculation, so we omit the details. 

Let ~ L ,  ~'/Ls, and ~ r  be defined as in Eq. (A.2). Let dfi, O(x) be a 
Gaussian process with covariance ~ L ( x - y ) .  "['hen 

z(L6)= adz(x,a,O) (a.7) 

with 

Z(2, 6, O) = exp[-e2 a ~ s ( y  - z)]:exp[a V ~ O(Y)]: 

x :exp[i6 V ~ O(z)]: exp [ i K,()~,a,O)J 
n = l  

In the Mayer series ~ = ~  Kn(~., 6, 0) the two-body potential is 

l y(a) 7(a') 7~s(x - x') + vs(x, ~,(a); x' ,  y(a') )  

V s ( x , a ; x ' , a ' ) =  i f a  and a '  ~ {1, 2} 

y(a) 7(a') ~'/~s(X -- x ' )  otherwise 

The one-body potential is 

V,(x, a) = - i g -  '/e7(a) r + ,~7(a) Y~s(X --y) 

(A.8) 

(A.9) 

+ &(a) ~ ( x  - z) (A. 10) 
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Throughout this appendix K n will refer to Kn(2, 6, ~), not to the Mayer 
series that was defined in Section 4. The Brydges and Federbush [2] form of 
the Mayer series is 

K,(2, 6, 0) = (-~)~ 1 (2g)~ ~ f do f(#l, ~) f" Vs(tl) 

• exp[-eP~ U(o) exp[i ,v#e q~ - e ( 2 ~  + 6~z)] 
(A.11) 

with 

i = 1  

C e pl 
e = Z y(~,) O(xD 

i 

% = Y~ ~(~,) ~ s ( X , - y )  
i 

(A.12) 

(A.13) 

and ~ defined similarly. The rest of the notation in Eq. (A. 11) is defined as 
in Eq. (A.2) of [5], except that wherever Vy appears in [5] we have 
Vv + VLs. Rather than repeat the definitions in [5], we give a verbal 
description of various terms. ~ is a sum over tree graphs, f de is an integral 
over the interpolation parameters s 1, s z ..... sn_ 1. f(r/, o) is a product of 
various s i. 12sQl) is a product over the n -  1 bonds in r/ of the two-body 
interactions associated with each bond. The term exp[-eP~ U(o) is 
exp[-eY~;<j (~s(i,j)] with the interpolation parameters s i inserted in the 
appropriate manner. U(o) contains the repulsive part of 15" s, while 
exp[--eI>s(a)] contains the rest of I5" s. 

Step 3 (The Strategy). Let 

Fo(,t, 6, O) = -~,~ ~Y~~s(Y - z) + ,12 ~ gT~ + a v ~  O(y) 

+62 + i6 , ~  0(z) 

n = l  

(A.14) 

(A. 15) 

So 
Z(~, 6, ~$) = exp[F(2, a, gi)] 
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Define ( )' by 

(I(0))' = Z(0, 0 ) - '  f d/2 I(0 ) exp[F(0, 0, 0)] (A.16) 

Then 

G(~., 3) = (exp[F@, 3, 0) - F ( 0 ,  0, 0)]) '  

So c~6G(2, 6)/c'33J. c336 is a sum of terms of the form 

[c~"iF(2, 3, 0)] exp[F(2, 3, 0) - F ( 0 ,  0, 0)] (A.17) 

Each a i is a pair of nonnegative integers indicating the number of ,i, and 6 
derivatives, respectively. So Y'.i ai = (3, 3). 

We will show that each ~ F  contributes ~(e (1/3+~')1'~1) to our bound on 
(A. 17) with 3' > 0. l al is the sum of the two components of a. Each ~3~F can 
also contribute a factor of (1 + 1/I y -  z ])lnl/4 to our bound on (A. 17). Since 
Y~i ]all = 6, we end up with the bound tr(e2)[1 + 1/ ly - z l ]  3/2 

Step 4 [Handling 0(x)'s]. 
introduce factors of 0(x) in the ( 
step 8 we will show 

Derivatives with respect to ~, or 6 can 
)' in (A.17). We bound these as follows. In 

lexp[F(2, 3, 0) - -  F(0, 0, 0)]1 = ~Y(1) (A.I8) 

A little thought shows F(0, 0, 0) is real and ( )' is a sine-Gordon probability 
measure. Using H61der's inequality and Theorem 5.2 of [5] 

O(x,)exp[F(2,6,0)-F(O,O,O)] ~< <?(1)[~L(0)] m/2 (A.19) 

Since ~ L ( 0 )  = 1/4~z? and 7 is fixed, we see that a factor of I~[m=l O(Xi) in 
(A.17) simply contributes a constant to our bound. This constant depends on 
m, but m will be at most 12. 

Step 5 (Derivatives of Fo). From 

1 1 1 
~ s ( 0 )  = 4~r# 4~r?- ~< 4-~ 
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and the definition of/~, Eq. (5.11), we have 

C ~1/2--8 
e/ l~sJl~< ~/2+~- (A.20) 

Since 6 < 1/6, 1/2 - ~5 > 1/3. From Eq. (A.2) we also have the bound 

1 
I~;~Ls(y -- z)l <~ (A.21) 

41rlY-zl 

cg'~F0 is not zero only for lal = 1 or 2. Equation (A.20) and step 4 easily 
establish the bound described at the end of step 3 for all a except a = (1, 1). 
c~(l'l)F o =-e~/~Ls(y-z) .  We bound this case using both Eqs. (A.20) and 
(A.21). 

l e~sCY - z)j = l e~sCY - z)l 1/2 l e~Ls(Y - -  z)l ~/2 

~<e1/4-~/zel/2 [ 1 ]1/2 

4zc[y-  z I 

Since ~ < 1/6, 1/4 -- 6/2 + 1/2 > 2/3 = l a I/3. We note that this is the only 
place where c~ ~ can contribute powers of 1/I y -  z I. 

Step 6 (Derivatives of Y', Kn). The usual techniques show 

with r = ~Y(1)p and 

I K . ( 2 , & O ) t ~ c ~ ( e - ' ) l A I r  n a (A.22) 

p = 2~/-/2 -~- C1 ~1+61 ~- C2 ~1+62 ~- 4~ 2 (A.23) 

(See the beginning of the proof in Appendix B for more details.) We can pick 
small but fixed so that for sufficiently small e, r ~< 1/2. So the Mayer series 

in (A.8) converges. 
Our bound on c3'~Kn must be better than this bound on Kn in three 

ways. First, we must gain an extra factor of e to cancel the ~(e -~) in 
(A.22). Second, we must gain a factor of c~(e 1/3+a') for each derivative in 
c ~ .  Third, our bound on c3~K, must be uniform in A. It cannot contain a 
factor of IAI like (A.22). 

To gain the needed extra factor of e we split up K, .  

6 
K n = Z K i n  

i=1 

; Kin= n--~ ~ ~ f da f(rl, a) I2"s(rl) U(a)I i (1.24) 
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11 = {exp[--eI~s~ -- l} exp[i V/e ~b I exp[--e2~ -- e6W~I 

12 = {exp[i k/e q~] - 1 - i V ~ q~} exp [ - e2% - E6~]  

14 = i V ~ q~{exp[-e).~ - e 6 ~ ]  - 1} 

I6 = 1+  i V/~ q) (A.25) 

K 6 is independent of 2 and 6, so we can forget about it. We bound , 5 c~ K. in 
the next step. For K~, K2,, K3~, and K~ we gain the needed extra factor of 
as follows. 

1 

exp[--el~~ 1 =-e l~~  ( dtexp[-teV~ (A.26) 
~o 

e q~2 (A.27) lexp[i V/~ ~ l -  1 - i k f e  ~[ ~<~- 

exp[-~; - ~6%1 + [ ~  + ~ 6 ~ 1  - 1 

= e2(,~y + 6 ~ ) 2  [1 (1 - t) exp[-- te(2~ + 6 ~ )  l dt (A.28) 
"0  

= - - e ( 2 ~  + 6 ~ )  exp[- te(2~,  + 6 ~ ) ]  dt (1.29) 

Note that in addition to the needed extra factor of e we gain an additional 
in KSn, while K4n contains an additional ,f~. 

In K~, K~ z, K3,, and K4, derivatives with respect to ;t or 6 can act on the 
2 or 6 in the exponential and bring down factors of e ~  or e ~ .  We use 
Eq. (A.20) to extract ~(el/3+~,) from these factors. In K~ two of the 
derivatives in c~ ~ can act on the ( ) ~  + 6 ~ )  2 term. The extra factor of 
from Eq. (A.28) gives a factor of el/2 for each such derivative. In K4, one of 
the derivatives in c3 ~ can act on the factor of ( ) t~  + 6 ~ )  outside the dt 
integral. The extra factor of xfe is associated with this derivative. 

c~ K ,  will Each of q~, ~ and 7~ contain n terms. So our bounds for ~ 
contain polynomials in n. This is not a problem since 

@ P(n) r"-l< oo 
n ~ l  

for any polynomial P(n) and r < 1. 
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oL i In Kin and K 2 we avoid a factor of tA[ in our bound on ? K n by 
keeping one of the factors of e ~  or eU~ brought down by c3 ~ rather than 
using Eq. (A.20). Then we use Eqs. (B.1) and (B.2) of Lemma B.1 to bound 
the fn integral. We bound the fn integral in K3n and K~ using Eqs. (B.3) and 
(B.2) of LemmaB.1. The factors of ( ,~y  + 6 ~ )  2 and ( 2 ~  + 6 ~ )  in 
(A.28) and (A.29) prevent a factor of [A I in these bounds. 

S tep  7 (Bounding c3~KnS). Recall that I7" s is V s + VLs. So we can 
expand l?s(r/) as a sum of 2 " -  1 terms. We separate out the one term which 
has the potential VLs associated with every bond in ~/. It is 

n - - 1  

V~(q) = ~ [  VLs(i  + 1, r/(i)) (A.30) 
i - 1  

We let the sum of the other 2 "-1 - 1 terms be V2(~/), so 

IT's(q) = V'( r / )+ VZ(r/) (a.31) 

We will show that the Vl(r/) part of  KS, is 0. The Vz(~]) part of KSn will ~0  as 
e -~ 0 since each term in V2(r/) contains at least one factor of Vs(i  + 1, ~l(i)), 
which ~ 0  as e ~ 0. 

Consider 

VI(~/) U(cr)()].~ + f i ~ )  (A.32) 

We claim that when summed over aa .... , a n it gives zero. (A.32) is a sum of 
2n terms like 

v 1(~) u(o) x~(a,) f2s (x ;  - y) (A.33) 

Every tree graph r/ has at least two vertices which have only one line hitting 
them. Let j be such a vertex with j not equal to i. 

Consider the sum of (A.33) over a s. The only factor in (A.33) which 
depends on a s is Vl(r/). (One of the hypotheses on V. is that the repulsive 
part of V~ is independent of the species of the particles. See p. 279 of [5]. So 
U(a)  is independent of aj). V1(t/) contains exactly one factor of 7(aj) since 
only one line hits vertex j.  Hence 

X' Vl(~) = 0 
g j  

This proves our claim. 
5 Thus we can replace 12s(r/) by V2(r/) in K~. c~ K .  is nonzero only for 

[a I=  1. I s already contains the needed extra factor of e. Equation (B.4) of 
Lemma B. 1 provides another factor of e to go with the single derivative 
in c3 ~. 
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Step 8. 

Kennedy 

We prove Eq. (A.18) from step 4. It is easy to check that 

J exp [Fo(,'],, ~, O)]] = cY(1) 

APPENDIX B 

We prove the bounds on Mayer graphs that were used in the proof in 
Appendix A. 

Lemma B.1. Let fn, i?s(rl ) and U(a) be defined as in Appendix A. 
[See Eq. (A.12) and step 2 of the proof in Appendix A.] Then for x, x'  C N3 
and 1 ~ i,j, k <~ n we have the following estimates: 

fnlfZs(q) U(o) V~ k) ~'Ls(X~- x)l = d~(1) p "-2 (B.1) 

f" 117-s(rl) g(o)TQs(Xi x)[ = cY(1)p n- '  (B.2) 

f"t#s(q) g(~r)~s(Xi-X)~s(Xi-X')]=c~(1)p"- '  (B.3) 

f" Igz(tl) s(o)TQs(X~ x)l = o-(Op ~-2 (B.4) 

V2(r/) is defined in step 7 of Appendix A. p is given by Eq. (A.23). 

Proof We begin by reviewing tbe usual technique for bounding 

We think of t/ as a tree graph, e.g., see Fig. 1. Starting with the vertices 
which have only one line attached to them, we use hypotheses (H1) and 
(H2) to bound the integrations over the associated (x i, ai) by p. 

So it suffices to show 

[Kn(2, 6, 0) - K.(O, O, 0)1 = ~ ( 1 )  

We use 

K.(X, 0)-K.(0, 0, 0) =  K.(t.Lt6,O)dt 
The d/dt brings down a factor of -e(~.~y + c ~ ) .  This gives the needed extra 
factor ofg. The f"  integral is bounded using Eq. (B.2) of Lemma B.1. | 
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Fig. 1. A typical tree graph r/. 

We repeat this procedure until all of the lines in the tree have been 
bounded. There are n -  1 lines, so we end up with a bound o f p  "-1. The last 
integration gives 

f dv (x,, at) = 4 ]AI 

Note that you can take any vertex to be the base of the tree, and so bound 
the corresponding integration last. 

To prove (B.2) we take vertex i as the base of the tree graph. We 
proceed as above, ending up with 

f dv (x,, a;) J ~ ( x ,  - x)l 

This integral is ~Y(1) by explicit computation. 
To prove (B.3) we use the Cauchy Schwartz inequality to reduce it to 

the case of i = j ,  x = x ' .  We proceed as before, ending up with 

f dv (x,, a , ) I ~ i s ( X , -  x)l 2 

which is ~Y(1). 
We prove (B.4) in the same manner as (B.2). However, at least one of 

the lines in r/ corresponds to just V s rather than 17"s = V s + VLs. By (HI)  
and (H2) such lines will contribute o~(~) instead of just p. 

The proof of (B.1) is slightly more complicated. We represent 170 by a 
dashed line. So ITs(t/) l~s(j, k) is the Mayer graph r/with a dashed line from 
vertex j to vertex k added. We take vertex i as the base of the tree. We bound 
integrations over vertices with only one line as before. However, the graph 
now has a loop in it. So we end up with the graph shown in Fig. 2. Of 
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k 
/ 

,t 
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Fig. 2. The ~3](j,k) term, represented by a - -  , introduces a 
loop in the graph. The . . . . . . . .  stands for an unspecified 
number of repetitions of 

course, one o f j  or k can equal m, but not both. Assumej  is not equal to m. 
We break the loop by applying the Cauchy-Schwartz inequality to the 
integration over vertex j. The resulting integrals are bounded by hypothesis 
(H4) and the computation 

I dx [~)(x)  + ~s(X)[  2 = ~(1)  

We fail to gain a factor of p from the line hitting vertex j when we do this. 
Having broken the loop we continue as before. II 
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